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Abstract

A physically sound three!dimensional anisotropic formulation of the standard linear viscoelastic solid
with integer or fractional order rate laws for a _nite set of the pertinent internal variables is presented[ It is
shown that the internal variables can be expressed in terms of the strain as convolution integrals with kernels
of MittagÐLe/er function type[ A time integration scheme\ based on the Generalized Midpoint rule together
with the Gru�nwald algorithm for numerical fractional di}erentiation\ for integration of the constitutive
response is developed[ The predictive capability of the viscoelastic model for describing creep\ relaxation
and damped dynamic responses is investigated both analytically and numerically[ The algorithm and the
present general linear viscoelastic model are implemented into the general purpose _nite element code
Abaqus[ The algorithm is then used together with an explicit di}erence scheme for integration of structural
responses[ In numerical examples\ the quasi!static and damped responses of a viscoelastic ballast material
that is subjected to loads simulating the overrolling of a train are investigated[ Þ 0888 Elsevier Science Ltd[
All rights reserved[

0[ Introduction

Modeling of viscoelastic response has a long tradition for describing a variety of phenomena
"such as creep\ relaxation and energy dissipation or damping# in structural analysis[ One particular
issue\ which has been discussed extensively\ is how complex the linear viscoelastic model must be\
i[e[\ what is the minimum number of material parameters that is required for an accurate description
of the observed material behavior<

Most engineering materials exhibit a weak frequency dependence of the damping characteristics\
which is di.cult to describe with classic linear viscoelasticity that is based on integer rate laws for
the pertinent internal variables[ However\ if the integer time derivative is replaced by a fractional
order derivative operator\ the number of parameters to describe damping in an accurate fashion

� Corresponding author[
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can be signi_cantly reduced[ It has been argued\ see Bagley and Torvik "0872#\ that it is su.cient
to use as few as four parameters for the uniaxial stress situation "two {{elastic|| constants\ one
relaxation constant and the non!dimensional fractional order of di}erentiation#[ The reason for
this is that the Fourier transforms of integer derivatives exhibit a frequency dependence that is
proportional to integer order of di}erentiation\ while fractional derivatives exhibit a frequency
dependence that is proportional to the fractional order of di}erentiation[ This is believed to be the
main features of using fractional derivative operators in this context[ Indeed\ the linear viscoelastic
model together with fractional derivatives have shown to be very ~exible also for describing
quasistatic response\ such as creep and stress relaxation\ see Enelund and Olsson "0884#[

Although it is possible\ at least in theory\ to use transform techniques for evaluating the structural
response for linear viscoelasticity\ it appears useful in practice to employ numerical integration in
time\ in particular for evaluating dynamic response[ Padovan "0876# presents time!integration
algorithms for calculating responses of viscoelastic structures governed by a linear viscoelastic
model described by a single equation involving fractional derivative operators acting on both
stresses and strains "without employing the concept of internal variables#[ The formulation of
viscoelasticity used in the present study is more general and leads to well!posed initial value
problems when incorporated into a framework for structural analysis[

The paper is organized as follows] a physically sound formulation of the Standard Linear
Viscoelastic Solid with integer as well as fractional order rate laws for a _nite set of internal
variables is presented[ A time integration scheme\ based on the Generalized Midpoint rule\ is
employed for integrating the constitutive response[ In a few numerical examples\ we consider the
quasistatic as well as the dynamic response of a layer of viscoelastic ballast material that is subjected
to overrolling of high speed trains[

0[0[ Notation

Regular italic characters denote scalar quantities\ bold!face italic characters denote vectors and
second order tensors "such as strain o and stress s#\ while bold!face calligraphic characters are used
to denote forth!order tensors "such as the identity tensor I and the elastic sti}ness modulus tensor
Ee#[

{{Open product|| is denoted &[ {{Scalar product|| is denoted =\ while {{double scalar product|| is
denoted]\ as in this example

=s=1 � s] s � sabsab "0#

The subscript dev stands for deviator\ e[g[\ the stress deviator is de_ned as

sdev � s−0
2
svold with svol � d] s "1#

where d is the second order identity "or Kronecker|s delta# tensor[
A superposed dot "=# denotes integer di}erentiation with respect to time\ e[g[\

u¾ �
du

dt
"2#
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Fig[ 0[ Mechanical representation of the Linear Standard Viscoelastic model[

1[ Linear standard viscoelastic model!anisotropy

1[0[ Preliminaries

The classical Linear Standard Viscoelastic model consists of N Maxwell!chains coupled in
parallel "see Fig[ 0#\ each one of which is associated with the elastic sti}ness tensor Ee

k and the
{{elastic strain|| tensor oe

k de_ned as

oe
k � o−ov

k"qk"0#\ qk"1#\ [ [ [ \ qk"M##\ k � 0\ 1\ [ [ [ \ N "3#

where ov
k is the viscous "or dissipative# strain tensor[ Each ov

k is a function of M scalar internal
variables qk"b#\ b � 0\ 1\ [ [ [ \ M\ with M � dim "o#\ which represent the dissipative mechanisms[ It
is clear that the explicit choice of these functional relationships and the rate laws for qk"b# are crucial
for de_ning the predictive capability of the resulting constitutive equations[

Upon generalizing the expression for the uniaxial stress we express the free energy C "per unit
volume# as

C �
0
1

s
N

k�0

oe
k] Ee

k] oe
k �

0
1

s
N

k�0

"o−ov
k#] Ee

k] "o−ov
k# "4#
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From the ClausiusÐDuhem!Inequality "CDI#\0 we then obtain the constitutive relation for the
stress s as

s �
1C
1o

� s
N

k�0

Ee
k] "o−ov

k# � s
N

k�0

sv
k "5#

where sv
k are the viscous stresses "that are energy conjugates to ov

k#\ which are given as

sv
k � −

1C
1ov

k

� Ee
k] "o−ov

k#\ k � 0\ 1\ [ [ [ \ N "6#

Remark] The initial elastic sti}ness "when ov
k � 9# is given as Ee � SN

k�0 Ee
k\ which is the elastic

response at very high loading rate[
Henceforth\ we restrict the model by assuming that all Ee

k are coaxial tensors[ This means that
they possess the same orthonormal set of second order eigentensors 8b\ b � 0\ 1\ [ [ [ \ M\ cor!
responding to the eigenvalues Ek"b# × 9\ in the following sense]

Ee
k] 8b � Ek"b#8b with =8b= � 0\ b � 0\ 1\ [ [ [ \ M "7#

Hence\ the spectral decomposition of Ee
k is

Ee
k � s

M

b�0

Ek"b#8b & 8b "8#

We shall now choose ov
k as

ov
k � s

M

b�0

qk"b#8b\ k � 0\ 1\ [ [ [ \ N "09#

and it follows from the CDI that the dissipative stress quantities\ conjugated to qk"b#\ are given as

Qk"b# � −
1C

1qk"b#

� Ek"b#"8b] o−qk"b## "00#

where the spectral properties in eqn "7# were used[

Remark] Upon comparing eqn "00# with eqn "6#\ it appears that

sv
k � s

M

b�0

Qk"b#8b "01#

in complete analogy with the de_nition of ov
k in eqn "09#[

0 With CDI we refer to the classical entropy inequality in its spatially "and temporally# strong form[ A temporally
weak form was suggested by Day "0857# and Day "0858#\ which is henceforth referred to as the Day Inequality "DI#[
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1[1[ Inte`er order rate laws

In complete analogy with the uniaxial version of the Linear Standard model\ we choose the rate
equations for qk"b# as the uncoupled equations "this is consistent with classic linear viscoelasticity#

q¾k"b# �
0

Ek"b#tk"b#

Qk"b# �
0

tk"b#

"8b] o−qk"b##

qk"b#"9# � 9\ k � 0\ 1\ [ [ [ \ N\ b � 0\ 1\ [ [ [ \ M "02#

where tk"b# × 9 are the relaxation times associated with each dissipative mechanism[ For the
constitutive model to reproduce the solid behavior with _nite long time elastic modulus tensor
Ee

"�#\ at least one set of relaxation times tk"b#\ b � 0\ 1\ [ [ [ \ M\ for a particular Maxwell chain k\
must be in_nite[ If tN"b# � � for b � 0\ 1\ [ [ [ \ M\ then Ee

"�# � Ee
N[ However\ in order to retain

formal simplicity\ we shall not make any a priori assumptions as to the magnitude of tk"b#[
It follows immediately that the model is thermodynamically admissible in the classical sense\

sine the rate of energy dissipation D is non!negative\ i[e[\

D 0 s
N

k�0

s
M

b�0

Qk"b#q¾k"b# � s
N

k�0

s
M

b�0

0
Ek"b#tk"b#

"Qk"b##1 − 9 "03#

As to the weaker inequality\ DI\ it is expressed in the present context as a statement of non!
negative energy dissipation up to the current time t × 9\ i[e[\

WD � g
t

9

D"s# ds − 9 "04#

It is then assumed that qk"b# have homogeneous initial condition[ Hence\ the stronger CDI expressing
the condition of nonnegative dissipative power is a su.cient condition for DI\ while the inverse
does not hold[

1[2[ Fractional order rate laws

The only di}erence as compared to the classical model is that the rate law\ eqn "02#\ is replaced
by an expression involving fractional derivative operators of order a $ "9\ 0#[ A suitable de_nition
of fractional di}erentiation of a function y"t# is de_ned as follows "see Gel|fand and Shilov\ 0853^
Oldham and Spanier\ 0863#] _rst we de_ne D−"0−a# "which is a fractional integration# as the
convolution

D−"0−a#y"t# 0 g
t

9

F"0−a#"t−t¼#y"t¼# dt¼ "05#

where



M[ Enelund et al[ : International Journal of Solids and Structures 25 "0888# 1306Ð13311311

F"0−a#"t# �
t−a
¦

G"0−a#
with t¦ � 6

t t × 9

9 t ³ 9
"06#

and G is the gamma function[ The integral in eqn "05# is normally convergent[ Hence\ from eqn
"05# a convergent expression for the a!order fractional derivative operator Da is given as "for details
we refer to Oldham and Spanier\ 0863#

Day"t# 0 D0 D−"0−a# 0
d
dt g

t

9

F"0−a#"t−t¼#y"t¼# dt¼

�
0

G"0−a#
d
dt g

t

9

y"t¼#

"t−t¼#a
dt¼ "07#

and it is noted\ in particular\ that\ Da is an ordinary derivative operator that requires initial
conditions on y"t#[ It is possible to use the de_nition in eqn "05# for fractional di}erentiation\ but
the integral is then normally divergent and has to be suitably regularized[ We are now in the
position to propose the fractional order rate law

Dak"b#qk"b# �
0

Ek"b#"tk"b##ak"b#
Qk"b# �

0

"tk"b##ak"b#
"8b] o−qk"b##

qk"b#"9# � 9\ k � 0\ 1\ [ [ [ \ N\ b � 0\ 1\ [ [ [ "08#

where tk"b# can not be interpreted as the most probable relaxation time out of a continuous
distribution of relaxation times[ The fractional order of di}erentiation ak"b# then plays the role of
a distribution parameter for the corresponding distribution of relaxation times\ see Enelund and
Lesieutre "0884#[ The use of fractional "instead of integer# order operators in the rate laws can now
be motivated by the idea that a whole spectrum of dissipative mechanisms can be included in a
single viscous strain having fractional order rate laws for the corresponding internal variables q"b#[
It can be trivially shown that

qk"b#"9# � 99D−"0−ak"b##qk"b#"9# � 9\ 9 ³ ak"b# ³ 0 "19#

which is the formal initial condition to eqn "08# rather than qk"b#"9# � 9[ Note that\ the operator in
eqn "19# is a "fractional# integral operator[ However\ qk"b#"9# � 9 is\ from a physical point of view\
the relevant initial condition[

1[2[0[ Convolution inte`ral form
By applying a Laplace transform and a subsequent inversion to the rate laws ðeqn "08#Ł with the

corresponding initial conditions in eqn "19#\ we may express the internal variables qk"b# in terms of
the strain tensor o as convolution integrals with singular kernels of MittagÐLe/er function type
"see Enelund and Olsson\ 0884#[ Using the convolution integral description of the internal variables\
we reformulate the constitutive relations for the dissipative stress quantities Qk"b# as

Qk"b#"t# � Ek"b#08b] o"t#−g
t

9

fk"b#"t−t¼#"8b] o"t¼## dt¼1
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� Ek"b#"8b] o"t#−" fk"b# � "8b] o##"t## "10#

where fk"b# is the memory kernel

fk"b#"t# � −
d
dt

"Eak"b#
ð−"t:tk"b##ak"b#Ł#\ t × 9 "11#

Here Ea is the a!order MittagÐLe/er function\ which is de_ned as "see Bateman\ 0844#

Ea"u# � s
�

k�9

uk

G"0¦ak#
"12#

We observe that the fractional calculus model represents a fading memory in the rather strict sense
that the memory kernels in eqn "11# are strictly decreasing and monotonic functions of time
"i[e[\ dfk"b#"t#:dt ³ 9#[ The reason for this is that the MittagÐLe/er function is completely monotonic
for a $ "9\ 0Ł and t × 9\ i[e[ "Bateman\ 0844#

"−0#n
dn

dtn
ðEa"−t#Ł − 9\ n � 0\ 1\ 2\ [ [ [ "13#

Consider the special case of ak"b# � 0^ then the memory kernel fk"b# becomes

fk"b#"t# �
0

tk"b#

e−t:tk"b#\ t × 9 "14#

which are the exponentially decaying memory functions that correspond to the classical linear
viscoelastic model with integer order rate laws[

Consider the convolution term f �k"b#"8b] o# in eqn "10#[ Enelund and Olsson "0884# showed that
its fractional order derivatives satis_es the following simple relation

Dak"b#" f kb � "8b] o## �
0

"tk"b##ak"b#
"8b] o−f k"b#� "8b] o##\ t × 9 "15#

This is exactly the fractional order rate law if the convolution integral term is interpreted as an
internal variable[

The constitutive relation in eqn "10# can also be written as

Qk"b#"t# � Ek"b# g
t

9−

Gk"b#"t−t¼#"8b] o¾"t¼## dt¼ "16#

with

Gk"b#"t# � Eak"b#
ð−"t:tk"b##ak"b#Ł\ t − 9 "17#

Here Ek"b#Gk"b#"t# is the dissipative stress response for a unit step strain tensor applied at time t � 9[
Taking the lower limit as 9− in the integral in eqn "16# allows for step discontinuities in the strains
at time � 9 by the standard relation between the Heaviside step function and the Dirac delta
function[ The short and long time behavior of the kernels Gk"b# are "see Bateman\ 0844#
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lim
t:9¦

Gk"b#"t# � lim
tk"b#:�

Gk"b#"t# � 0 and lim
t:�

Gk"b# � 9

Consider the simple case of uniaxial stress "b � 0 and 8 � 0#\ for two parallel Maxwell chains with
t1 : �[ The stress relaxation function or the relaxation modulus "i[e[\ the stress response on a unit
strain imposed at time t � 9# can then be written as

srel"t# � E0 Eað−"t:t0#aŁ¦E1\ t − 9 "18#

The stress relaxation function is obtained by applying a Laplace transform and a subsequent
inverse Laplace transformation to the constitutive response to a unit step strain "for a full derivation
see Enelund\ 0886#[ The corresponding instantaneous and long!time responses are

lim
t:9¦

srel"t# � E0¦E1 � E"9# and lim
t:9¦

srel"t# � E1 � E"�#

as they should be[
The convolution integral forms of viscoelasticity in\ e[g[\ eqns "10# and "16# are often referred to

as the Boltzmann "0765# or hereditary models[ Singular kernels of MittagÐLe/er functions were
_rst introduced into viscoelasticity by Rabotnov "0879#[ Koeller "0873# established the relationship
between kernels of MittagÐLe/er function type and the fractional calculus model of viscoelasticity[

1[2[1[ Thermodynamic admissibility
It is natural to ask if the dissipation inequality as formulated in eqn "03# is satis_ed for a $ "9\ 0#[

By a counter example it is simple to show that the CDI is not generally satis_ed[ To this end\
consider again the simple situation of uniaxial stress with the extreme choice a � 9\ which gives
q0 � o:1 and q1 � 9[ We then obtain

D � Q0q¾0¦Q1q¾1 �
E0

3
oo¾ "29#

which may take any sign[ However\

WD � g
t

9

D"s# ds �
E0

7
o1 − 9 with o"9# � 9 "20#

We are thus lead to investigate whether DI is satis_ed or not[ In the general situation\ we write the
DI inequality as

WD � s
N

k�0

s
M

b�0 g
t

9

Qk"b#"s#q¾k"b#"s# ds − 9 "21#

By introducing the fractional order rate law for qk"b# in eqn "08# together with the de_nitions in
eqn "05# and "07# for fractional order integration and di}erentiation\ respectively\ we write the
dissipation work for the actual model "corresponding to DI# as

WD � s
N

k�0

s
M

b�0

Ek"b#"tk"b##ak"b# g
t

9

Dak"b#"D0 D−0qk"b#"s## D0qk"b#"s# d"s#
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� s
N

k�0

s
M

b�0

Ek"b#"tk"b##ak"b# g
t

9

q¾k"b#"s#"D−"0−ak"b##q¾k"b#"s## ds

� s
N

k�0

s
M

b�0

Ek"b#"tk"b##ak"b# g
t

9

q¾k"b#"s# 0g
t

9

F"0−ak"b##"s−t¼#q¾k"b#"t¼# dt¼1 ds

� 1 s
N

k�0

s
M

b�0

Ek"b#"tk"b##ak"b# g
t

9 g
t

9

F"0−ak"b##"s−t¼#q¾k"b#"t¼#q¾k"b#"s# dt¼ds − 9 "22#

where we used the homogeneous initial conditions on qk"b# when composing orders of generalized
di}erintegration[ The kernel function F"0−ak"b##"t# is only de_ned for positive values of the argument[
In eqn "22# we extend the domain of de_nition to negative t by assuming F"0−ak"b##"t# to be an even
function\ i[e[\ F"0−ak"b##"t# is replaced by F"0−ak"b##"=t=#[ By use of a table of Fourier transforms of
generalized functions "see Gel|fand and Shilov\ 0853 p[ 248#\ we obtain the Fourier transform of
the kernel function in eqn "22# as

F"F"0−ak"b##"=t=#"v# � g
�

−�

=t=−ak"b#

G"0−ak"b##
eivt dt � 1 sin "ak"b#p:1#=v=−"0−ak"b## "23#

which is an even positive function "distribution# of v[ It then follows from the Bochner!Schwartz
theorem "see Reed and Simon\ 0864# that F"0−ak"b##"t# are functions "distributions# of positive type[
Therefore "see Reed and Simon\ 0864# the dissipation work WD in eqn "22# is non!negative\ since
Ek"b# × 9 and tk"b# × 9[ We can now conclude that the temporally weak form of the dissipation
inequality "DI# is satis_ed for arbitrary loadings\ while the temporally strong form of the dissipation
inequality "CDI# is not satis_ed in general[

2[ Linear standard viscoelastic model*isotropy

In the case of isotropic viscoelastic response\ only two internal variables are required "that
correspond to the deviatoric and volumetric responses#[ Although this may be taken as a trivial
starting point\ it can also be obtained from the general theory as follows] according to isotropic
linear elasticity\ the eigenvalues Ek"b#\ for each k\ are given as

Ek"0# � 2Kk\ Ek"1# � Ek"2# � = = = � Ek"M# � 1Gk "24#

corresponding to the eigentensors

80 �
0

z2
d\ 8b $ Vdev � "c=c] d � 9#\ b � 1\ 2\ [ [ [ \ M "25#

Here we have introduced the space of deviatoric second order tensors Vdev\ which is spanned by
the M−0 mutually orthonormal 8b[ Clearly\ Kk and Gk are the bulk modulus and shear modulus\
respectively\ associated with the kth Maxwell chain[

In order to ensure complete viscoelastic isotropy\ we also choose
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tk"0# � tK
k \ tk"1# � tk"2# � = = = � tk"M# � tG

k "26#

and

ak"0# � aK
k \ ak"1# � ak"2# � = = = � ak"M# � aG

k "27#

Upon splitting ov
k in eqn "09# in its deviatoric and volumetric parts\ while using eqn "25#\ we

obtain

ov
k � ov

k\dev¦
0
2
ov
k\vold "28#

with

ov
k\dev � s

M

b�1

qk"b#8b and ov
k\vol � ov

k] d � z2qk"0# "39#

Moreover\ from eqn "6# we obtain in a trivial fashion

sv
k � sv

k\dev¦
0
2
sv

k\vold "30#

with

sv
k\dev � 1Gk"odev−ov

k\dev# and sv
k\vol � 2Kk"ovol−ov

k\vol# "31#

Finally\ we note that the instantaneous shear modulus and bulk modulus are found as

G � s
N

k�0

Gk and K � s
N

k�0

Kk "32#

whereas the long!time counterparts are found as "in the case that tG
N : � and tK

N : �#

G"�# � GN and K"�# � KN "33#

Because of the assumptions in eqns "26# and "27#\ we now obtain from eqn "08#

DaG
k ov

k\dev �
0

"tG
k #a

G
k

"odev−ov
k\dev#\ k � 0\ 1\ [ [ [ \ N\ 9 ³ aG

k ¾ 0 "34a#

and

DaK
k ov

k\vol �
0

"tK
k #a

K
k

"ovol−ov
k\vol#\ k � 0\ 1\ [ [ [ \ N\ 9 ³ aK

k ¾ 0 "34b#

In order to obtain eqn "34a# we chose b � 0 in eqn "08#\ whereas eqn "34b# was obtained upon
multiplying by 8b and summing all the terms from b � 1 to b � M[ Here\ it was also used that
Idev] o � odev\where Idev is the fourth!order deviator projection tensor de_ned by
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Idev � s
M

b�1

8b & 8b � I−
0
2

d & d\ 80 & 80 �
0
2

d & d "35#

2[0[ Ei`ht parameter model

Due to the ~exibility in _tting measured viscoelastic material data to the Linear Standard Model
of viscoelasticity when using fractional order rate laws\ it is often su.cient to use a single dissipative
strain decomposed in a deviatoric and volumetric part[ As a consequence\ the model requires eight
parameters in the isotropic case and it is obtained by using the following set of parameters]

N � 1\ tK
1 : � and tG

1 : �9 ov
1 � 9 "36#

Upon using the notation ov
0 � ov "etc[# we obtain the constitutive relation for the stress

"s � sdev¦0:2svold# from eqns "5# and "31# as

sdev � 1"G0¦G1#odev−1G0o
v
dev "37a#

svol � 2"K0¦K1#ovol−2K0o
v
vol "37b#

which will be combined with the rate laws for odev and ovol according to eqns "34a# and "b#[
Furthermore\ a straightforward elimination of the viscoelastic strains odev and ovol from eqns "37a#
and "34a#\ "37b# and "34b#\ respectively\ yields

sdev¦"tG#a
G
DaG

sdev � 1G"�#odev¦1G"9#"tG#a
G
DaG

odev\ 9 ³ aG ¾ 0 "38a#

svol¦"tK#a
K
DaK

svol � 2K"�#ovol¦2K"9#"tK#a
K
DaK

ovol\ 9 ³ aK ¾ 0 "38b#

where G"9# � G0¦G1 and G"�# � G1 are identi_ed as the instantaneous shear modulus and long
time shear modulus\ respectively\ while K"9# � K0¦K1 and K"�# � K1 are identi_ed as the instan!
taneous bulk modulus and long time bulk modulus\ respectively[ The simplest possible isotropic
model is de_ned by the same distribution of relaxation times in shear and volumetric responses\
which is obtained by setting aG � aK � a and tG � tK � t[ In this case only six parameters are
required\ and eqns "18a# and "b# simplify to

sdev¦"t#aDasdev � 1G"�#odev¦1G"9#"t#aDaodev "49a#

svol¦"t#aDasvol � 2K"�#ovol¦2K"9#"t#aDaovol "49b#

Equations "49a# and "b# are often referred to as the fractional calculus model of viscoelasticity\
here generalized to 2!D states for isotropic materials\ see e[g[\ Bagley and Torvik "0872#[ Some
work using this fractional calculus model of viscoelasticity to describe viscoelastic damping in the
structural equations of motion have been carried out\ see\ e[g[\ Bagley and Calico "0880#\ Fenander
"0885#[ However\ when incorporated directly into the structural equations of motion\ this form
leads to higher order di}erential equations in time\ which demand for initial conditions of fractional
order higher than one\ see Enelund and Olsson "0884#[ The present formulation\ which involves
the concept of internal variables\ will lead to well!posed initial value problems and only require
initial conditions for the physical quantities\ when incorporated into the structural equations of
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motion[ Thus\ the physical interpretation and veri_cation of the fractional order initial conditions
are avoided[

3[ Numerical integration of constitutive response

3[0[ Anisotropic model

Since the integer order rate law "ak"b# � 0# is obtained as a special case of the more general
fractional order rate laws\ we consider the latter case[ A suitable truncation of Gru�nwald|s
de_nition of fractional di}erentiation yields a possible approximation for the fractional time rate
of a function y"t# as "see Oldham and Spanier\ 0863#

n¦0"Day# �
0

"Dt#a
s
n

j�9

bj"a#n¦0−jy\ with bj"a# �
G" j−a#

G"−a#G" j¦0#
"40#

It is then assumed that the spacing in time is uniform\ i[e[\ ny"t# � y"nDt#[ The calculation of bj"a#
is simpli_ed by the recursion formula

G" j−a#
G" j¦0#

�
" j−0−a#

j
G" j−0−a#

G" j#
"41#

Note that no evaluation of gamma functions are needed whatsoever and the coe.cients bj"a# are
given by

b9"a# � 0\ b0"a# � −a\ [ [ [ \ bk"a# �
"k−0−a#

k
bk−0"a#\ [ [ [

For convenience we rewrite the expression in eqn "40# as

n¦0"Day# �
0

"Dt#a
"n¦0y−ny¹#\ with ny¹ � − s

n

j�0

bj"a#n¦0−jy "42#

where ny¹ is a known quantity at time tn¦0 "and thus plays the role of ny when a � 0#[ In order to
obtain "42#\ it was used that b9"a# � 0[

We are now in the position to apply the General Midpoint rule to eqn "08#\ while using eqn "42#
and combining with eqn "00#\ to obtain the updated dissipative stress quantities n¦0Qk"b#[ The result
becomes

n¦0Qk"b# �
nQv

k"b#¦ak"b#DQe
k"b#

with

ak"b#"ak"b#\ u\ Dt# � 00¦u 0
Dt
tk"b#1

ak"b#

1
−0

"43#

where
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nQv
k"b# � ak"b# $0−"0−u# 0

Dt
tk"b#1

ak"b#

% nQk"b#¦ak"b#Ek"b#"nqk"b#−
nq¹k"b## "44#

and DQe
k"b# is the incremental elastic stress de_ned as

DQe
k"b# � Ek"b#8b] Do "45#

Clearly\ the choice of u "u $ ð9\ 0Ł# de_nes the implicitness of the integration rule in standard fashion^
e[g[\ the classical midpoint rule is de_ned by u � 0:1\ whereas the Backward Euler rule is de_ned
by u � 0[

Now\ upon inserting n¦0Qk"b# from eqn "43# and eqns "5# and "01#\ we obtain the updated stress
n¦0s as

n¦0s � s
N

k�0

s
M

b�0

n¦0Qk"b#8b � nsv¦Ev] Do "46#

where

nsv � s
N

k�0

s
M

b�0

nQv
k"b#8b "47a#

and

Ev � s
N

k�0

s
M

b�0

ak"b#Ek"b#8b & 8b "47b#

We may denote nsv and Ev the {{algorithmic|| equivalents to ns and Ee\ respectively\ since they are
functions of Dt via ak"b#"ak"b#\ u\ Dt#[ Clearly\ when Dt � 9 "while Do � 9\ corresponding to in_nitely
rapid loading#\ then ak"b# � 0 and it follows from eqns "44#\ "47a# and "b# that nsv � ns and Ev � Ee[

Remark] In contrast to the use of integer rate laws "ak"b# � 0#\ it is necessary to calculate and store
all the values jqk"b# for j � 9\ b � 0\ 1\ [ [ [ \ n\ so that nq¹k"b# can be calculated from eqn "42#1[ Each
value of −n¦0qk"b# is most conveniently obtained from the relation in eqn "00# once n¦0Qk"b# has
been calculated from eqn "43#[ In the special case that ak"b# � 0\ we simply set nq¹k"b# � nqk"b# and
there is no need to store the history[

3[1[ Isotropic model

In the special case of isotropy\ we obtain in a fashion that is similar to the general situation]

n¦0sv
k\dev � nsvv

k\dev¦aG
k Dsve

k\dev with aG
k "aG

k \ u\ Dt# � 00¦u 0
Dt

tG
k 1

aG
k

1
−0

"48#
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n¦0sv
k\vol �

nsvv
k\vol¦aK

k Dsve
k\vol with aK

k "aK
k \ u\ Dt# � 00¦u 0

Dt

tG
k 1

aG
k

1
−0

"59#

where

nsvv
k\dev � aG

k $0−"0−u# 0
Dt

tG
k 1

aG
k

% nsv
k\dev¦1aG

k Gk"nov
k\dev−

no¹
v
k\dev# "50#

nsvv
k\vol � aK

k $0−"0−u# 0
Dt

tK
k 1

aK
k

% nsv
k\vol¦2aK

k Kk"nov
k\vol−

no¹v
k\vol# "51#

whereas Dsve
k\dev and Dsve

k\vol are the incremental elastic stresses de_ned as

Dsve
k\dev � 1GkIdev] Do � 1Gk"Do#dev "52#

Dsve
k\vol � 2Kkd] Do � 2Kk"Do#vol "53#

Upon inserting eqns "48# and "59# with "52# and "53# into eqn "5#\ we obtain the updated stress
n¦0s as

n¦0s � s
N

k�0

n¦0sv
k � nsv¦Ev] Do "54#

where

nsv � nsv
dev¦

0
2

nsv
vold with nsv

dev � s
N

k�0

nsvv
k\dev\ nsv

vol � s
N

k�0

nsvv
k\vol "55#

whereas

Ev � 1GvIdev¦Kvd & d with Gv � s
N

k�0

aG
k Gk\ Kv � s

N

k�0

aK
k Kk "56#

3[3[ Constitutive response

To characterize the present viscoelastic model we study the uniaxial constitutive creep and
relaxation responses in the case of two parallel Maxwell chains with t0 � t\ t1 : � and
E"9#:E"�# � 1[ The stress relaxation function "i[e[\ the uniaxial stress response on an applied unit
strain at time t � 9# is given by eqn "18#[ Figure 1 shows the stress relaxation function according
to eqn "18# for di}erent orders of fractional di}erentiation a in the rate laws for the viscous strain[
We use the asymptotic expansion of the MittagÐLe/er function "see Enelund and Olsson\ 0884^
Bateman\ 0844# when displaying the stress relaxation function for large times[ From Fig[ 1 we may
interpret the parameters of the present viscoelastic model] the relaxation constant t gives the
transition from short time glassy behavior to the long time rubbery behavior\ while the order of
fractional di}erentiation a gives the slope of the relaxation curve between the two regions[ Figure
2 shows the numerically obtained constitutive creep function or the creep compliance "i[e[\ the
uniaxial strain response up on a unit stress applied at time t � 9# for di}erent values of a[ A fully
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Fig[ 1[ Normalized stress relaxation function srel:"E"9# vs non!dimensional time t:t[ Results are given for E"9#:E"�# � 1[
The in~uence of di}erent values of the fractional derivative exponent a is shown[

Fig[ 2[ Normalized creep function ocreep:o9 vs non!dimensional time t:t[ Here is o9 � s9:E"9# "the instantaneous strain
response#[ Results are given for E"9#:E"�# � 1[ The in~uence of the di}erent values of fractional derivative exponent a is
shown[
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implicit scheme ðu � 0 in eqns "43# and "44#Ł as outlined in Section 3 is employed[ Based on
accuracy considerations\ we use the time step Dt � 9[90t[ The curves in Fig[ 2 agree very well with
analytical creep functions "not displayed in the _gure#[ The analytical creep function is derived in
the same manner as the stress relaxation function\ see Enelund "0886#[ As seen in Figs 1 and 2\
stress relaxation and creep over many decades can be modeled by the use of a fractional di}er!
entiation operator in the rate laws[ Note that the time required for the constitutive responses to
reach their long!time asymptotic values increases considerably with decreasing order of the frac!
tional derivative exponent in the rate law[ Moreover\ the initial or short time "t:t ³ 0# relaxation
and creep increase most signi_cantly with decreasing order of the fractional derivative exponent
a[

4[ Structural analysis

With the constitutive theory for general stress states presented in the previous sections\ it is
possible to analyze the structural responses upon a suitable _nite element discretization[ Formally\
any such set of structural equations takes the form "in matrix notation#

Mu�¦f � 9 with f � fint−fext "57#

together with initial conditions

u"9# � 9u and u¾"9# � 9v "58#

where u is the nodal displacement vector\ M is the mass matrix\ f int is the internal nodal force
vector "corresponding to stresses s# and f ext is the external nodal force vector "corresponding to
applied load#[

Using e[g[\ a {{nearly|| explicit Newmark|s method "b � 9 and g � 0:1\ see Hughes\ 0876# with a
lumped mass matrix\ i[e[\ M : Mlump � diag ðm0\ m1\ [ [ [ \ mLŁ\ we obtain the nodal displacement
solution n¦0ui from

n¦0ui �
nui¦Dtnvi−

Dt1

1
m−0

i
nfi\ i � 0\ 1\ [ [ [ \ L "69#

The updated element spatial distribution of strain n¦0o"m# can now be evaluated as

n¦0o"m# � B"m#n¦0u"m# "60#

where B"m# is the element strainÐdisplacement matrix and u"m# is element nodal displacements[ By
using the updated strains "and the previous histories#\ the updated element spatial distribution of
the stress n¦0s within each element can be obtained by using the scheme for numerical integration
of the constitutive response described in Section 3 ðsee e[g[\ eqn "54#Ł[ With this solution\ n¦0 f int

i

can be calculated\ whereby the element spatial distribution of stress n¦0s"m# is employed]

n¦0f int � s
NEL

m�0 gV"m#

B"m#n¦0s"m# dV "61#
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where NEL is the number of elements\ Vj is the element volume and Bj is the "element# strainÐ
displacement matrix[ When n¦0f int

i is known\ the nodal velocities n¦0vi are obtained from

n¦0vi �
nvi−

Dt
1

m−0
i "n¦0fi¦

nfi# "62#

and a new time step can be taken[

5[ Numerical examples

The present general three!dimensional viscoelastic material model with integer and fractional
order rate laws for the pertinent internal variables and the corresponding algorithm for integration
of the constitutive response is implemented\ as user!supplied material routines\ in the commercial
FE!codes ABAQUS!Standard see ABAQUS:Standard Version 4[3 "0883# and ABAQUS!Explicit
see ABAQUS:Explicit Version 4[4 "0884#[ ABAQUS!Standard is used for calculations of qua!
sistatic responses "i[e[ where no inertia forces are considered#[ The corresponding material routine
uses a fully implicit scheme "u � 0# for time integration the updated stress ðcf eqn "43#Ł[ ABAQUS!
Explicit is used for calculations of dynamic responses[ An explicit scheme "u � 9# together with
the explicit di}erence scheme provided by ABAQUS!Explicit for the time integration of the system
of equations on structure level is then used[ Algorithmic damping is not imposed in the explicit
central di}erence scheme for the time integration of the structural responses[ The appearances of
these numerical implementations will be demonstrated in a few examples[

5[0[ Dynamic response of viscoelastic bar

The _rst example considers a horizontal _xed!free viscoelastic uniform bar subjected to a step
load applied at time t � 9[ The amplitude of the load is equal to 0 N[ The simplest solid linear
viscoelastic material model "i[e[\ two parallel Maxwell chains and a fractional order rate law for
the pertinent internal variable# is used[ The following data are used "see also Enelund and Josefson\
0886#]

Length � 9[4 m\ cross!sectional area � 9[9914 m1\ E"9# � E0¦E1 � 09 MN:m1\
E"�# � E1 � 6 MN:m1\ density � 0999 kg:m2\ t0 � t � 9[91 s\ t1 � � and a � 9[4[

Figure 3 shows the calculated tip displacements of the bar[ To investigate the in~uence of the
numerical modeling\ four di}erent FE!models were used] the _rst one is modeled by _ve linear
two!node bar elements of equal length[ The second one is modeled with _ve linear two!node bar
elements of unequal length\ the ratio between the longest and shortest element is four to one[ The
third one is modeled with _ve equal rectangular four!node plane stress elements[ The fourth one
is modeled by _ve equal four!node plane stress elements but distorted so that the {{vertical|| sides
form a 34> angle with the horizontal direction of the bar[ The three _rst models give about the
same result\ while the long time response for the strongly distorted 1!D mesh is wrong in both
amplitude and period length[ The result from the bar model with equal elements gives the same
result as in Enelund and Josefson "0886#[ Note that the time!integration of the viscoelastic consti!
tutive law is carried out in a di}erent manner[ This solution is "in its turn# veri_ed by comparing
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Fig[ 3[ Tip displacements of a step loaded viscoelastic bar modeled with equal and unequal bar elements and undistorted
and distorted plane stress elements vs non!dimensional time t:t[

with a time series expansion of the analytical solution[ The four!node elements are the standard 1!
D plane stress elements in ABAQUS!Explicit[ For these elements only one integration point in the
Gaussian quadrature is employed for element sti}ness calculations[ Moreover\ hourglass control
and lumped mass matrix are also used[ The explicit central di}erence scheme is only conditionable
stable and the critical time step in the elastic case is Dtcrit � 1:vmax\ where vmax is the highest
eigenfrequency of the FE!model[ Numerical experiments in Enelund and Josefson "0886# indicate
that the stability limit for the elastic case "using instantaneous material parameters# seems to be a
good estimation of the stability limit also for the viscoelastic case[ The critical time step used in
ABAQUS!Explicit is estimated from a CFL!condition involving typical element length and a wave
propagation velocity "see Cook et al[\ 0878^ ABAQUS:Explicit Version 4[4\ 0884#[ ABAQUS!
Explicit checks and adjusts the critical time step before taking a new step[ In all "explicit# examples\
we prescribe a constant time step smaller than the critical time step and we have not noticed any
enforced adjustments of the critical time step during the calculations in ABAQUS!Explicit[

5[1[ Quasistatic response of ballast material

The second example considers a rigid railway sleeper on a viscoelastic ballast material[ The
ballast material is resting on an elastic soil layer of in_nite extent and for comparison also "in a
separate case# on a smooth rigid surface[ The isotropic viscoelastic material model with two parallel
Maxwell chains "t1 : �# and the same distribution of relaxation times in shear and volumetric
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Fig[ 4[ Geometry and magni_ed deformed mesh for a rigid sleeper on viscoelastic ballast material resting on a soil layer
of in_nite extent[ Deformed mesh at the end of the time interval is displayed[

responses is used to model the _ctitious ballast material[ The following material parameters are
then used]

G"9# � G0¦G1 � 75 MN:m1\ G"�# � G1 � 49 MN:m1\ K"9# � K0¦K1 � 399 MN:m1\
K"�# � K1 � 122 MN:m1\ tK

0 � tG
0 � 9[91 s\ tK

1 � tG
1 � �\ aK � aG � a $ "9\ 0Ł\

Density � 2999 kg:m2[

For the elastic soil we use] E � 39 MN:m1\ n � 9[3 and density � 1999 kg:m2[ The ballast material
is modeled with 271 four!node 1!D elements in plane strain and the soil is modeled with 28 semi!
in_nite plane strain elements in ABAQUS!Standard[ Figure 4 shows the FE!discretization and the
magni_ed deformed mesh of the ballast model at the end of the time interval under consideration[
The sleeper is subjected to a quasistatic step load at time t � 9[ The amplitude of load is 009 kN
which corresponds to half the axle load for a typical railway vehicle[ Figure 5 shows the quasistatic
response at the mid point of the rigid sleeper in the system in Fig[ 4[ The in~uence of some di}erent
values of the order of fractional di}erentiation in the rate laws is shown[ Figure 6 shows the
quasistatic response at the mid point of the sleeper on the viscoelastic ballast material resting on a
smooth rigid ground[ The curves displayed in Figs 5 and 6 corresponds to the standard relaxation
curves often shown for viscoelastic materials "cf Fig[ 1#[

The time step chosen in both _gures is very small "Dt � 9[990t# in order to capture the behavior
at very short times[ Still\ although some 09\999 time increments are used\ the short and long time
asymptotes for a � 9[4 were not closely reached[ However\ one _nds that the short and long time
asymptotes for a � 0 corresponds to the elastic responses using elastic material parameters K � K"9#\
G � G"9# and K � K"�#\ G � G"�#\ respectively[ Further\ with proper choices of time steps\ the
curves for a � 9[56 will approach the short and long time asymptotes[
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Fig[ 5[ Quasistatic response at the middle of a rigid sleeper on a viscoelastic ballast material vs non!dimensional time
t:t[ The ballast material is resting on an elastic soil layer of in_nite extent[ The in~uence of some di}erent values of the
fractional derivative exponent a is shown[

Fig[ 6[ Quasistatic response at the middle of a rigid sleeper on a viscoelastic ballast material vs non!dimensional time
t:t[ The ballast material is resting on smooth rigid ground[ The in~uence of di}erent values of the fractional derivative
exponent a is shown[
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Fig[ 7[ Dynamic response at the mid point of a rigid sleeper on a viscoelastic ballast material having a fractional
derivative exponent equals 9[4 in the rate laws for the viscous strain[ The sleeper is subjected to an impulse load that
models the overrolling of high!speed train[

5[2[ Dynamic response of ballast material

The third example considers the dynamic response of the sleeper!ballast!system resting on
smooth rigid ground as described above[ The fractional derivative exponent is now taken to be
equal to 9[4[ First we consider an impulse load modeling the overrolling of a high speed train with
a velocity of 299 km:h[ The duration of the impulse is 9[9995 s which corresponds to 49 time
increments in the integration of the structural response[ The magnitude of the impulse is 009 kN[
Figure 7 shows the transient response at the mid point of the sleeper in the case of the load
described above[ In Fig[ 8 the transient response at the mid point of the sleeper subjected to a
{{dynamic|| step load applied at time t � 9 with magnitude of 009 kN is displayed[ The curves in
Figs 7 and 8 are obtained by using the full strain tensor history for the viscoelastic ballast material
in the material routine for the updated stress ðcf eqns "42#Ð"46#Ł[ Clearly\ for large structures and
long time intervals it is advantageous if the time series for the strain tensor could be truncated\
otherwise the time series of the strains for all Gaussian point of the FE!model should be stored
and used in each time increment[ Figure 09 displays the same step load response as in Fig[ 8 vs
time increments when only the strains in the last 0999\ 4999 and 09\999 time increments are stored
and included when calculating the updated stress[ The complete time history corresponds to 04\999
time increments[ It is clearly seen that in order to have qualitatively good long time response\ the
major part of the time history must be retained[
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Fig[ 8[ Dynamic response at the mid point of a rigid sleeper on a viscoelastic ballast material having a fractional
derivative exponent equals 9[4 in the rate laws for the viscous strain[ The sleeper is subjected to step load with a
magnitude equal to 009 kN[

5[3[ Movin` load simulatin` over!rollin` of a hi`h speed train

The fourth example considers a moving load that simulates the e}ect of a high speed train on a
railway ballast material resting on a soil layer[ The sleepers "concrete# and the rail "steel# are
modeled as being elastic "see Fig[ 00#[ The ballast material is the same viscoelastic material as in
previous examples "a � 9[4# and the soil layer is regarded as elastic[ Used material parameters are
given in Section 5[2[ The vertical boundaries of the section are absorbing boundaries "non!
re~ecting# available in ABAQUS!Explicit[ The soil layer is resting on a rigid smooth ground[ The
ballast material is modeled with 139 four!node 1!D elements in plane strain\ the soil layer is model
with 0579 four!node 1!D elements in plane strain\ each sleeper is modeled with one four node 1!D
element in plane strain and the rail is modeled with 40 two!node plane EulerÐBernoulli beam
elements in ABAQUS!Explicit "see Fig[ 00#[ The system is subjected to a moving impulse load of
magnitude 009 kN and with a velocity of v � 299 km:h[ The duration of the load impulse is 9[9913
s which corresponds to 029 time increments[ The load reaches the beginning of the modeled section
at time t � 9 and reaches the end at time t � 9[95 s[ Figure 00 shows the geometry and magni_ed
deformed mesh at time t � 9[913 s for the model subjected to the moving load as described above[
Figure 01 displays the displacement response of the _fth sleeper from the left "see Figure 00# vs
time[ The time interval studied in Fig[ 01 is three times the time required for the load to pass the
section[
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Fig[ 09[ Dynamic response of the step loaded sleeper[ The in~uence of truncation of the strain time history is shown[
The continuous line represents the displacement solution when the full time history of the strain is used[ The dotted line
represents the displacement solution when a maximum of 09\999 time increments are included in the strain history and
the dash!dotted line represents the displacement solution when a maximum of 4999 time increments are included\ while
the dashed line represents the solution when a maximum of 0999 time increments are included[

Fig[ 00[ Geometry and magni_ed deformed mesh for railway track consisting of elastic sleepers and rails on a viscoelastic
ballast material resting on an elastic soil layer[ The system is subjected to a moving impulse load modeling a high!
speeding train travelling with v � 299 km:h[ The deformed mesh displayed is valid for time t � 9[913 s[ It takes the load
9[95 s to pass the section[ The vertical boundaries are absorbing boundaries[
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Fig[ 01[ Dynamic response of a sleeper in a railway track subjected to a moving impulse with velocity v � 299 km:h and
a magnitude of 009 kN[ The impulse reaches the region at time t � 9 and it takes 9[95 s for it to pass the section[ The
ballast material is viscoelastic with a fractional derivative exponent equal to 9[4 in the rate laws for the pertinent internal
variables[

6[ Summary and discussion

A physically sound three!dimensional anisotropic formulation of the Standard Linear Vis!
coelastic Solid with integer as well as fractional order rate laws is presented[ It is shown that the
internal variables can be expressed in terms of the total strain tensor as convolution integrals
with singular kernels of MittagÐLe/er function type[ A time integration scheme\ based on the
Generalized Midpoint rule together with the Gru�nwald algorithm for numerical fractional di}er!
entiation\ for integration of the constitutive response is developed[ This integration scheme can be
used together with an explicit di}erence scheme for calculating structural responses[

By using fractional derivative operators in the rate laws instead of integer order derivative
operators\ the linear viscoelastic model becomes very ~exible for describing structural responses
like creep\ relaxation and energy dissipation[

The present general viscoelastic model is implemented in a general purposed FE!code together
with the algorithm for time integration of constitutive response[ One may note that the capability
to model viscoelastic material governed by fractional order constitutive relations in general purpose
FE!codes is so far very limited[ One of the very few examples found in the literature is in Padovan
"0876#[ However\ the 1!D!example presented in Padovan "0876# involves a somewhat simpler
constitutive model where the derivatives on the stress is omitted ðcf eqns "38a# and "b#Ł[

When employing fractional order rate laws\ it is found that the complete history of the strain
variables has to be sorted and used in each time increment during the FE!analysis[ The need to
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store the strain history depends on how strong the {{memory|| is and the time needed for material
to reach its lower asymptote compared to the time step taken in the dynamic analysis[ As seen in
Figs 1 and 2\ the memory of the viscoelastic material becomes stronger for decreasing value of the
fractional derivative exponent a[ Lower values of a\ like the value a � 9[4 used in Fig[ 09\ increase
the need for the use of the complete strain history in the FE!analysis[ On the other hand\ for higher
values of a\ closer to unity\ a large part of the strain history can be truncated[ This means that the
viscoelastic model proposed may require to much disc memory when the fractional order rate laws
are used for large parts of the structure studied[ However\ in many engineering applications\ only
parts of a structure are strongly damped and need to be accurately modeled[
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